
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2005; 49:999–1014
Published online 3 August 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/�d.1037

Evaluation of adaptive mesh re�nement and coarsening for the
computation of compressible �ows on unstructured meshes

Miguel A. T. Walter1;‡, Aline A. Q. Abdu1;§, Lu��s Fernando Figueira da Silva1;∗;†

and João Luiz F. Azevedo2;¶

1Department of Mechanical Engineering; Pontif��cia Universidade Cat�olica do Rio de Janeiro;
Rua Marquês de São Vicente; 225; Rio de Janeiro; RJ 22453-900; Brazil

2Institute of Aeronautics and Space; Centro T�ecnico Aeroespacial; CTA=IAE=ASE-N;
São Jos�e dos Campos; SP 12228-904; Brazil

SUMMARY

The compressible gas �ows of interest to aerospace applications often involve situations where shock
and expansion waves are present. Decreasing the characteristic dimension of the computational cells in
the vicinity of shock waves improves the quality of the computed �ows. This reduction in size may
be accomplished by the use of mesh adaption procedures. In this paper an analysis is presented of an
adaptive mesh scheme developed for an unstructured mesh �nite volume upwind computer code. This
scheme is tailored to re�ne or coarsen the computational mesh where gradients of the �ow properties
are respectively high or low. The re�nement and coarsening procedures are applied to the classical gas
dynamic problems of the stabilization of shock waves by solid bodies. In particular, situations where
oblique shock waves interact with an expansion fan and where bow shocks arise around solid bodies
are considered. The e�ectiveness of the scheme in reducing the computational time, while increasing
the solution accuracy, is assessed. It is shown that the re�nement procedure alone leads to a number
of computational cells which is 20% larger than when alternate passes of re�nement and coarsening
are used. Accordingly, a reduction of computational time of the same order of magnitude is obtained.
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1000 M. A. T. WALTER ET AL.

1. INTRODUCTION

Mesh adaption procedures are frequently used to reduce the characteristic dimension of the
computational cells in interesting regions of the �ow�eld, with the aim of yielding a better
resolution of the simulated phenomena. Most often in computational �uid dynamics, such
regions are those where the gradients of the �ow properties are high or where the numerical
solution exhibits a large error. Typical regions of high gradients are boundary and shear layers,
chemical reaction fronts and shock waves. The exact position of these regions are not known
a priori. In particular, shock waves are usually captured by the discretization schemes of the
governing equations and span over two or three computational cells, even though the physical
dimension of these waves is of the order of a few mean free paths of the gas molecules.
Successive re�nements are usually necessary to achieve a good resolution of the regions

of the �ow�eld where high gradients occurs. As a consequence, a signi�cant increase of
the number of mesh volumes may result, eventually leading to a concentration of re�ned
volumes in regions of the �ow�eld where those volumes are no longer needed. Thus, mesh
coarsening techniques are of interest with the aim of increasing the characteristic dimension
of the computational mesh, ultimately leading to a reduction of the computational time.
In this paper re�nement and coarsening techniques tailored for unstructured meshes will be

evaluated with respect to the gains in solution accuracy and computational time. During the
past few years, several authors have developed mesh adaption techniques in an unstructured
mesh context.
Hierarchical mesh adaption techniques have been developed by Kallinderis and Vijayan

[1] and Speares and Berzins [2] on three-dimensional unstructured meshes. The re�nement
procedure leads to a nested mesh structure, in which the previous coarse mesh is stored
adjacent to the re�ned one. The coarsening procedure acts only in regions previously re�ned,
and thus the coarsest mesh possible is the original mesh. Therefore, the largest spatial scales
are �xed by the choice of the initial mesh.
Dompierre et al. [3] and Webster et al. [4] have developed a technique based on the

collapse of edges in order to coarsen unstructured meshes in two-dimensional con�gurations.
In this method, the nodes which de�ne a given edge are transformed in one node, and the
volumes around the removed edge cease to exist. Figure 1 provides a schematic representation
of this situation.
While the former method is better suited for the simulation of transient phenomena, since

the initial (coarsest) mesh can be recovered at any time, the latter is more indicated to the sim-
ulation of steady state problems. Moreover, the edge-based data structure used in the computer
code adopted in the present work [5–7] is ideally suited to the edge-collapse technique.
Miller et al. [8] developed a coarsening approach for two-dimensional unstructured meshes

which leads to a sequence of bounded aspect ratio meshes, i.e. meshes for which all elements
have bounded aspect ratios. This procedure guarantees that both the number of meshes in the
sequence and the number of elements on a given mesh are optimal. Another procedure, which
may be used to coarsen the mesh, begins with the choice of one node to be removed. As
illustrated in Figure 2, around this node a diagonal swap technique is applied in order to end
up with only three edges sharing this node. These edges are removed, together with the three
adjoining triangles, and a new triangle is formed.
Still another possibility, which has not been explored in the literature, to the best of the

authors’ knowledge, is the use of Delaunay triangulations to reconstruct regions of the mesh
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Figure 1. Coarsening scheme using the edge-collapse procedure.

Node to be
removed

Figure 2. Diagonal swap coarsening procedure.

where triangles have been removed. This procedure does not necessarily lead to an increase of
the characteristic dimension of the mesh. Moreover, the Delaunay triangulation complicates
the attribution of properties from the original mesh to the new one. Finally, sophisticated
implementations could be devised, which would combine two or more of the techniques
brie�y described here, with the aim of optimizing the mesh quality. However, de�ning such
implementations is beyond the scope of the present work.
After recalling the mathematical formulation for 2-D gas dynamic problems, and the as-

sociated numerical method, the paper describes in detail the mesh coarsening procedure de-
veloped. Then the re�nement=coarsening procedure is evaluated by means of computations of
three compressible gas �ow problems.
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1002 M. A. T. WALTER ET AL.

2. THEORETICAL FORMULATION

In the present case, the �ow�eld is simulated using the 2-D Euler equations, which can be
written in integral conservative form for a 2-D coordinate system as

∫∫
V

@U
@t
dx dy +

∫
S
(F dy −G dx)=

∫∫
V
Q dx dy (1)

The vector of conserved quantities, U, the expressions for the convective �ux vectors, F
and G, and the chemical source vector, Q, are written as

U=

⎡
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

The nomenclature used in this system of equations is the one usually adopted in aerospace
applications, such that � is the density, u and v are the Cartesian velocity components, E is
the total energy per unit of mass, Yi; !̇i; Wi are the mass fraction, the molar production rate,
and the molecular weight of the ith species, respectively, and p is the static pressure.
In the solution of Equation (1), N−1 chemical species are necessary, since the mass fraction

of the last chemical species, YN , is calculated as YN =1− ∑N−1
i=1 Yi. The state equation for a

mixture of thermally perfect gases

p=�RT
N∑
i=1

Yi
Wi

(3)

is used to evaluate the pressure, p. In this equation, R is the universal gas constant. The total
energy, E, is de�ned as the sum of the internal energy and the kinetic energy,

E= e+
1
2
(u2 + v2)=

N∑
i=1
Yiei +

1
2
(u2 + v2)=

N∑
i=1
Yihi − p

�
+
1
2
(u2 + v2) (4)

The internal energy is a function of the mixture composition and of the temperature, T , which
is calculated by a Newton method once e is known. This is required since the speci�c enthalpy
of the species are represented by 5th-order polynomials of the temperature in the present case
[9]. Note that, although the formulation above is pertinent to variable mixture composition
�ows of interest to previous studies [6, 7, 10], the results presented here consider air as the
working �uid.
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3. NUMERICAL METHOD

Computations are performed using a numerical code [6] that solves the governing equa-
tion system given in Equations (1) and (2) using an upwind cell-centred �nite volume
method on unstructured triangular meshes. Temporal discretization uses a classical, 2nd-
order, Runge–Kutta time stepping scheme [11]. In the spatial discretization, the interface �uxes
are formulated using the Advection Upstream Splitting Method (AUSM+ [12]). Spatial higher
order accuracy is sought with MUSCL [13] extrapolation. This code has been validated against
analytical and experimental results for several compressible gas �ows [5–7, 10].

4. ADAPTIVE REFINEMENT

The adaptive mesh re�nement technique used [6] increases the number of grid points in
regions of the �ow�eld where large property gradients occur. The procedure requires the
identi�cation of such regions, which is accomplished based on a sensor quantity de�ned for
each computational cell

(sensor)i= max
m

( |∇�m|i
|�mmax − �mmin |

)
; �m=(p; u; v; T; Yj) (5)

where �mmax and �mmin are the maximum and the minimum values of the �m property in the
whole �ow�eld and |∇�m|i is the magnitude of the gradient of the �m property in the ith
control volume. As described in greater detail elsewhere [6], the re�nement procedure halves
the faces of each volume for which the sensor exceeds a prescribed threshold. The new node
created is connected either to existing or to new nodes, leading to the formation of two or
four smaller triangles, respectively. Successive re�nements are typically used to obtain an
adequate resolution of shock or detonation waves [6, 7, 10]. However, as several passes of
re�nement are used, and �ow structures steepen, regions of the �ow�eld may arise where an
unnecessary concentration of computational volumes appears. This drawback of the application
of the re�nement process to the problems of interest to the authors prompted the development
of the following coarsening procedure.

5. COARSENING PROCEDURE

The coarsening procedure used in this work is based on the edge collapse technique, illustrated
in Figure 1. The procedure consists on the collapse of two adjoining nodes (n1 and n2), leading
to the formation of a new node (n). As a result of this procedure, the two neighbouring
volumes are removed.

5.1. The node removal process

Starting from the computed results on the initial mesh, Equation (5) is used to calculate the
normalized gradients of the selected variables in the computational domain. The gradients on
the edges are calculated as the average of the gradients of the neighbouring volumes of a given
edge. The edges which have a value of the normalized gradient below a given threshold are

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:999–1014



1004 M. A. T. WALTER ET AL.

chosen as possible candidates to be removed. These nodes are ordered in a list by increasing
values of the gradient. The selected edge removal will occur only if the new mesh quality
would not be reduced when compared to the original one. The mesh quality measure will be
discussed further on.
Note that the quality of resulting volumes depends on the position of the new node. As

shown in Figure 3, the procedure considers the following positions:

1. The geometric centre of the polygon formed by all volumes surrounding the node,
Figure 3(a).

2. The centre of the edge to be collapsed, Figure 3(b).
3. Each one of the two original nodes of the edge, Figures 3(c) and (d).

The position which leads to the best quality of the modi�ed volumes is chosen. If none of
these locations yields a good mesh quality, this edge is deleted from the list of edges to be
removed.
Once an edge has been chosen for removal, and with the purpose of avoiding an excessive

growth of the volumes, it is enforced that no edges of the same volume will be chosen for
removal in the current coarsening pass. As a consequence, a given node is not allowed to be
displaced twice during a pass of the coarsening procedure. This restriction de�nes a domain
of in�uence corresponding to the edge that will be removed, as shown in Figure 4. All the
neighbouring edges of a node that belong to an edge selected to be removed are deleted from
the list of edges to be removed, regardless of the value of the sensor.
Special care is needed for coarsening volumes along a computational boundary. The present

procedure does not consider the removal process in boundary edges, since the code does not
contain geometric information about the boundaries. Furthermore, for the edges that have one
node at the boundary, the only possible result would be the collapse to the boundary node,

(a)

(c) (d)

(b)

Edge to be collapsed

Figure 3. Representation of the four di�erent possibilities of the edge collapse.
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Figure 4. In�uence domain of the collapsed edge.

since the edges which de�ne the contour cannot be changed. Therefore, the current implemen-
tation does not consider the collapse of edges which have at least one node at the boundary,
since it would not lead to a signi�cant increase of the characteristic length scale of the com-
putational mesh. One should note that the drawback related to �xing the edges which have a
node at a boundary is not large, as the number of edges at the boundaries is much smaller than
those at the interior of the computational domain, at least for the cases of interest in this work.
Once the edge removal process is �nished, the mesh data structure has been modi�ed, lead-

ing to the absence of nodes and volumes. In the present context of cell-centred �nite volume
method, reordering and renumbering the position, connectivity, neighbouring and boundary
volume tables are necessary. The attribution of the volume properties occurs, simultaneously,
as the volume reordering proceeds. Since the presented applications concern only the removal
of edges in regions of the �ow�eld where gradients are relatively small, on the current im-
plementation the properties of the modi�ed volumes remain unchanged. If one is interested
in removing edges in high gradient regions, more sophisticated procedures should be used
in which the properties of each of the modi�ed volumes are altered to enforce conservation.
Figure 3 suggests that such a procedure could be based on volume averages, in which a
modi�ed volume receives part of the mass, momentum and energy of the original volumes
that are overlaid.
The ordering process uses two types of lists. The �rst one is the list of removed nodes,

which has dimension equal to 2’ and increasingly orders the removed nodes (n1 and n2).
The second is the new node list, with dimension ’, which has the number of each new
node (n) and the number of the volumes which share those vertices. One should note that the
number of the new nodes is half the number of removed nodes. The reordering position table
is created by direct attribution of the number of the �rst ’ removed nodes to the new nodes,
with simultaneous update of the coordinates. For the last ’ nodes, starting by the last element
of the list of removed nodes, a shift up movement has to be executed. The reconstruction of
the neighbourhood table and boundary volume table is performed by the position reordering
table and connectivity table.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:999–1014
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(a)

(c)

(b)

(d)

Figure 5. Scheme of volumes with di�erent values of Q�.

5.2. The quality measure

In this work, the quality of the volumes is a measure of the elongation of the triangles, de�ned
as the ratio of the radius of the inscribed and circumscribed circles

Q� =2
r
R

where r and R are the radii of the inscribed and circumscribed circles of the triangle, re-
spectively, as shown in Figure 5(a). The quality criterion adopted in the mesh coarsening
procedure is de�ned by

C6Q�61

It should be noted that, for an equilateral triangle (Figure 5(b)), Q� =1. The value of the
constant C indicates the minimum quality value accepted. Good results have been obtained
with C around 0.70–0.75. As an illustration of this metric, note that isosceles triangles with
angles equal to 26◦ and 102◦, shown in Figures 5(c) and (d), respectively, both have values
of quality Q� =0:70:

6. RESULTS AND DISCUSSION

The mesh adaption procedure has been tested in three supersonic air�ow con�gurations. The
�rst con�guration analysed is the forward facing step subject to a supersonic air �ow. In

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:999–1014
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this classical con�guration only the mesh coarsening procedure has been applied. The second
con�guration involves the stabilization of an oblique shock wave (OSW) around a compression
ramp, whereas the third considers a ramp of �nite length which leads to the interaction
between the OSW and an expansion fan. For these last two cases, the results obtained with a
coarse mesh are compared to those obtained (i) when three passes of the adaption procedure
are performed after convergence of the computations and (ii) when, in addition to these
three re�nement passes, mesh coarsening is performed a few interactions prior to re�nement.
The time required to perform mesh re�nement and coarsening is clearly a function of the
values of the adaption thresholds required, i.e. the larger the number of cells to be re�ned or
edges to be collapsed, the longer the computational time. In all cases presented in this paper,
the cost of a re�nement or coarsening pass is at most equal to that of a single time step.
All the computations have been performed on a Pentium IV, 2:4MHz processor using Linux
RedHat 9.0 distribution and the Gnu compiler.

6.1. Boundary conditions

The boundary conditions used in this work are classical. Since all the cases studied concern
supersonic �ows, at the entrance of the computational domain �xed values of Mach number,
pressure and temperature are prescribed for the air �ows. The incoming �ow is always parallel
to the x-axis. These �ow conditions are adopted as initial conditions throughout the computa-
tional domain. When solid walls are present, adiabatic, non-catalytic, slip boundary conditions
are used. Symmetry conditions are imposed at y=0. Concerning the exit boundaries, non-
re�ective characteristic boundary conditions are used [14].

6.2. Forward facing supersonic step

The supersonic forward facing step is a classical con�guration used for evaluating computa-
tional �uid dynamics schemes [15]. The freestream �ow Mach number, M∞=3, is the one
corresponding to the computational results obtained by Woodward and Colella [15], although
the focus here is not on the accuracy of the computations. The evolutions of density and
pressure on this �ow�eld are given in Figure 6 for the �nest mesh used, which considers a
quasi-regular triangular distribution, where each boundary is divided in segments of length
equal to 1

80 th of the height of the computational domain. This �gure clearly shows the dis-
tinct bow shock wave that stabilizes upstream of the step as well as the subsequent Mach
re�ections and interactions between oblique shock waves, expansion fans, and shear layers.

Figure 6. Density and pressure contours for a M∞=3, p∞=1 atm, T∞=300 K,
�ow over a forward facing step.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:999–1014



1008 M. A. T. WALTER ET AL.

The goal here is to evaluate the performance of the mesh coarsening procedure previously
described. Thus, the results obtained on the �ne mesh are compared to computations for
which coarsening of successively larger thresholds are considered. Three coarsening passes
are performed after convergence of the solution is obtained. Table I gives the values of the
thresholds used in each pass. Note that, for all the computed results, 4000 interactions have
been performed, and that the three coarsening passes occur at interactions 300; 1000 and 2000.
In this table, the �nal number of nodes and triangles are also given, as well as the total CPU
time required for the computations. The table shows that the gains in CPU time, which span
from 15 to 20% as the mesh is coarsened, are smaller than those obtained in storage space,
which reach 27% for the coarsest mesh. This is natural, since convergence is �rst obtained
on a �ne mesh before coarsening is applied.
The e�ect of the coarsening procedure on the computed solution can be assessed in

Figure 7. In this �gure the evolutions of pressure and Mach number along a horizontal line
placed at the initial half-height of the channel are shown, for the seven cases listed in Table I.
The crossing of the shock waves and subsequent �ow expansions can be clearly distinguished.
The use of the coarsening procedure is found to lead to practically no degradation of the

Table I. Comparison of the di�erent mesh coarsening cases for the forward-facing step problem.

Number of nodes Number of elements CPU time (s)
Case number Thresholds (% reduction) (% reduction) (% reduction)

0 (0:0; 0:0; 0:0) 20124 (—) 39606 (—) 57746 (—)
1 (0:1; 0:1; 0:1) 16066 (20.2) 31490 (20.5) 48788 (15.5)
2 (0:1; 0:2; 0:2) 16004 (20.5) 31366 (20.8) 48555 (15.9)
3 (0:1; 0:3; 0:3) 15786 (21.6) 30930 (21.9) 48254 (16.4)
4 (0:1; 0:4; 0:4) 15438 (23.3) 30234 (23.7) 47142 (18.4)
5 (0:1; 0:5; 0:5) 15047 (25.2) 29452 (25.6) 46326 (19.8)
6 (0:1; 0:6; 0:6) 14608 (27.4) 28574 (27.9) 46096 (20.2)
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Figure 7. Density (g=cm3) and Mach number evolution at half-height for a M∞=3, p∞=1 atm,
T∞=300 K, �ow over a forward facing step.
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solution quality. Indeed, this �gure shows that a very good agreement is obtained between
the computed results. The exception lies at the crossing of the last shock wave, where dis-
crepancies that may reach 10% of the local density value are observed due to the smearing
of the shock wave that occurs at the coarser meshes.

6.3. Two-dimensional supersonic wedge

Figure 8 gives the results of the computations performed for the second con�guration using, as
freestream parameters, M∞=2:25, T∞=300K and p∞=1atm. The value of the wedge angle
is �=20◦, and the freestream is aligned with the x-direction. In this �gure the resulting meshes
and the pressure contours are shown. The results of the mesh re�nement and coarsening
procedures can be clearly seen in this �gure. The value of the sensor threshold used in
all re�nement passes is 0.01, whereas the coarsening procedure uses 0.75. Note that mesh
adaption is performed after convergence of the computation is obtained on a given mesh. The
initial mesh, which is shown in Figure 8(a), contains 751 nodes and 1391 volumes. The mesh
which results from three re�nement passes is shown in Figure 8(b), and has 3630 nodes and
7120 volumes. In this case, the total computational time is 6:0 h. The mesh and the solution
corresponding to three re�nement and two coarsening passes is given in Figure 8(c). The
�nal number of nodes and volumes is 2843 and 5552, respectively, and the total CPU time is
4:8 h. Note that this computational time includes the elapsed time during the re�nement and
coarsening passes. Thus, the use of mesh coarsening, in addition to mesh re�nement, led to
a reduction of 22% in the number of volumes and of 20% in the CPU time, when compared
to using mesh re�nement alone.

6.4. Supersonic �nite ramp

The results obtained for the �nite ramp con�guration are shown in Figure 9. The ramp used
has an angle of �=40◦, and the freestream �ow parameters are M∞=8, T∞=300 K and
p∞=1atm. In this �gure, the �nal mesh and pressure �elds for the initial mesh are shown for
the case of three re�nement passes and for the case where two coarsening passes precede the
last two re�nements. The threshold values used in the re�nement and coarsening passes are
the same as those used in the wedge cases. The initial mesh, shown in Figure 9(a) contains
1105 nodes and 2065 volumes, whereas the mesh resulting from three re�nement passes,
which is depicted in Figure 9(b), contains 6500 nodes and 12 798 volumes. The total CPU
time in the latter case is 8:5 h. Figure 9(c) gives the results obtained when two coarsening
passes are also performed. The �nal mesh, for which the total computational time was 6:9 h,
has 5262 nodes and 10 322 volumes. In this case, the reduction in CPU time is 18.8%, and
the number of volumes was decreased 19.3%.
The computed �ow solution is not a�ected by the coarsening procedure, as it could be

expected. This is illustrated in Figure 10 by the longitudinal evolution of di�erent �ow prop-
erties, which are taken along the ‘0’ line. This �gure shows that a clear improvement of the
shock wave resolution results when the mesh is re�ned. Indeed, the values of pressure and
temperature predicted by the shock polar analysis [16], 47:4 atm and 2325 K, could not be
reproduced by the calculation on the initial coarse mesh. After the three re�nement passes,
the computed values exhibit an excellent agreement with the classical analysis. Moreover, the
use of the coarsening procedure does not alter the pressure downstream of the oblique shock
wave, and only minor di�erences are observed in the �ow expansion region.
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Figure 8. Mesh and pressure �eld (atm) corresponding to the air�ow around a compression ramp,
M∞=2:25, T∞=300 K and p∞=1 atm, wedge angle �=20◦.
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Figure 9. Mesh and pressure �eld (atm) corresponding to the air�ow around a compression=expansion
ramp, M∞=8, T∞=300 K and p∞=1 atm, wedge angle �=40◦.
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Figure 10. Longitudinal evolutions of density (g=cm3), pressure (atm) and temperature (K) along the
‘0’ line shown in Figure 9: (a) density; (b) pressure; and (c) temperature.

7. CONCLUSIONS

This paper has presented a grid coarsening procedure that can be used for general triangular
unstructured grids. The procedure was constructed in such a way as to guarantee that the
mesh quality is not degraded as the grid is coarsened and that the costs of both re�nement
and coarsening procedures are equivalent to that of a single time step. The coarsening proce-
dure was implemented in a code which already had the capability to perform adaptive mesh
re�nement. The work was developed in the context of providing a computational tool that
can be used to simulate high speed �ows and, in particular, supersonic combustion �ows. For
such cases, successive mesh re�nements are typically used to achieve the desired resolution
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of shock or detonation waves. However, the use of successive re�nements eventually leads to
an unnecessary concentration of the mesh in �ow regions in which there are no more high
gradients, which can constitute a waste of computational resources. Hence, the availability of
both re�nement and coarsening capabilities yields the possibility of analysing reactive �ow
regimes previously unattainable to the authors due to high computational costs.
The test cases considered in the paper have addressed typical con�gurations for high speed

gas dynamic problems. The results have shown that the proposed coarsening procedure is
e�ective in reducing computational costs without a�ecting the quality of the solutions obtained.
In particular, the results have shown that the resolution of shock and contact surfaces is
not a�ected by the mesh coarsening. For the test cases considered in the present work, the
results have indicated on the order of 20% storage and computational time savings after three
passes of the re�nement=coarsening procedures, when compared to computations which used
mesh re�nement alone. Furthermore, as the results also indicated, such savings were achieved
without compromising the quality of the computational meshes.
Even if the present adaptive mesh scheme has been applied to �ow�elds described by the

Euler equations, the essence of the re�nement=coarsening procedure does not depend on the
particular physical formulation being solved. Clearly, when addressing viscous computations,
one may want to investigate combinations of variables that would be more adequate for the
sensor de�nition.
Future work should involve the implementation of multigrid together with adaptive meshing.

Indeed, there are other versions of the present code [17] which have implemented multigrid
techniques. As a �nal remark, note that the extension of the technique presented to generalized
three-dimensional meshes is object of future work. In particular, issues associated to the
removal of cell faces and to a measure of quality for generalized polyhedrons need to be
examined.
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